813 research outputs found

    Cut-Matching Games on Directed Graphs

    Full text link
    We give O(log^2 n)-approximation algorithm based on the cut-matching framework of [10, 13, 14] for computing the sparsest cut on directed graphs. Our algorithm uses only O(log^2 n) single commodity max-flow computations and thus breaks the multicommodity-flow barrier for computing the sparsest cut on directed graph

    Approximation Algorithms for Hypergraph Small Set Expansion and Small Set Vertex Expansion

    Get PDF
    The expansion of a hypergraph, a natural extension of the notion of expansion in graphs, is defined as the minimum over all cuts in the hypergraph of the ratio of the number of the hyperedges cut to the size of the smaller side of the cut. We study the Hypergraph Small Set Expansion problem, which, for a parameter δ(0,1/2]\delta \in (0,1/2], asks to compute the cut having the least expansion while having at most δ\delta fraction of the vertices on the smaller side of the cut. We present two algorithms. Our first algorithm gives an O~(δ1logn)\tilde O(\delta^{-1} \sqrt{\log n}) approximation. The second algorithm finds a set with expansion O~(δ1(dmaxr1logrϕ+ϕ))\tilde O(\delta^{-1}(\sqrt{d_{\text{max}}r^{-1}\log r\, \phi^*} + \phi^*)) in a rr--uniform hypergraph with maximum degree dmaxd_{\text{max}} (where ϕ\phi^* is the expansion of the optimal solution). Using these results, we also obtain algorithms for the Small Set Vertex Expansion problem: we get an O~(δ1logn)\tilde O(\delta^{-1} \sqrt{\log n}) approximation algorithm and an algorithm that finds a set with vertex expansion O(δ1ϕVlogdmax+δ1ϕV)O\left(\delta^{-1}\sqrt{\phi^V \log d_{\text{max}} } + \delta^{-1} \phi^V\right) (where ϕV\phi^V is the vertex expansion of the optimal solution). For δ=1/2\delta=1/2, Hypergraph Small Set Expansion is equivalent to the hypergraph expansion problem. In this case, our approximation factor of O(logn)O(\sqrt{\log n}) for expansion in hypergraphs matches the corresponding approximation factor for expansion in graphs due to ARV

    Approximation Algorithms for Partially Colorable Graphs

    Get PDF
    Graph coloring problems are a central topic of study in the theory of algorithms. We study the problem of partially coloring partially colorable graphs. For alpha = alpha |V| such that the graph induced on S is k-colorable. Partial k-colorability is a more robust structural property of a graph than k-colorability. For graphs that arise in practice, partial k-colorability might be a better notion to use than k-colorability, since data arising in practice often contains various forms of noise. We give a polynomial time algorithm that takes as input a (1 - epsilon)-partially 3-colorable graph G and a constant gamma in [epsilon, 1/10], and colors a (1 - epsilon/gamma) fraction of the vertices using O~(n^{0.25 + O(gamma^{1/2})}) colors. We also study natural semi-random families of instances of partially 3-colorable graphs and partially 2-colorable graphs, and give stronger bi-criteria approximation guarantees for these family of instances

    Many Sparse Cuts via Higher Eigenvalues

    Full text link
    Cheeger's fundamental inequality states that any edge-weighted graph has a vertex subset SS such that its expansion (a.k.a. conductance) is bounded as follows: \phi(S) \defeq \frac{w(S,\bar{S})}{\min \set{w(S), w(\bar{S})}} \leq 2\sqrt{\lambda_2} where ww is the total edge weight of a subset or a cut and λ2\lambda_2 is the second smallest eigenvalue of the normalized Laplacian of the graph. Here we prove the following natural generalization: for any integer k[n]k \in [n], there exist ckck disjoint subsets S1,...,SckS_1, ..., S_{ck}, such that maxiϕ(Si)Cλklogk \max_i \phi(S_i) \leq C \sqrt{\lambda_{k} \log k} where λi\lambda_i is the ithi^{th} smallest eigenvalue of the normalized Laplacian and c0c0 are suitable absolute constants. Our proof is via a polynomial-time algorithm to find such subsets, consisting of a spectral projection and a randomized rounding. As a consequence, we get the same upper bound for the small set expansion problem, namely for any kk, there is a subset SS whose weight is at most a \bigO(1/k) fraction of the total weight and ϕ(S)Cλklogk\phi(S) \le C \sqrt{\lambda_k \log k}. Both results are the best possible up to constant factors. The underlying algorithmic problem, namely finding kk subsets such that the maximum expansion is minimized, besides extending sparse cuts to more than one subset, appears to be a natural clustering problem in its own right

    Approximating CSPs with Outliers

    Get PDF

    Planted Models for the Densest k-Subgraph Problem

    Get PDF
    Given an undirected graph G, the Densest k-subgraph problem (DkS) asks to compute a set S ? V of cardinality |S| ? k such that the weight of edges inside S is maximized. This is a fundamental NP-hard problem whose approximability, inspite of many decades of research, is yet to be settled. The current best known approximation algorithm due to Bhaskara et al. (2010) computes a ?(n^{1/4 + ?}) approximation in time n^{?(1/?)}, for any ? > 0. We ask what are some "easier" instances of this problem? We propose some natural semi-random models of instances with a planted dense subgraph, and study approximation algorithms for computing the densest subgraph in them. These models are inspired by the semi-random models of instances studied for various other graph problems such as the independent set problem, graph partitioning problems etc. For a large range of parameters of these models, we get significantly better approximation factors for the Densest k-subgraph problem. Moreover, our algorithm recovers a large part of the planted solution
    corecore